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The physics of shock-waves with vibrational relaxation regions is recapitulated, 
and it is shown that exact methods of analysis can be developed from the classical 
Rayleigh-line equations by treating the real gas as an ideal gas with heat transfer. 
By using these methods to analyse experimental records of density distributions 
in relaxation regions, a large number of local values of the relaxation frequency, 
rather than a single over-all value, may be obtainedfrom each shock-wave record. 

1. Introduction 
When a one-dimensional compression wave of finite amplitude travels into 

a gas at rest, the ultimate stable waveform, which propagates with constant 
velocity, is the result of a balance between two sets of influencesJThese are, 
as discussed in detail by Lighthill (1956), the convection which tends to steepen 
the waveform, and the various types of lag which resist this steepening. 

We shall in this paper refer to the particular case of gases in which the lags in 
the various degrees of freedom of the molecule have markedly different effects. 
The translational and rotational degrees of freedom reach equilibrium in a very 
short time (after a few collisions) and the effects of their lag are confined to a 
narrow region at the front of the wave, the diffusion-resisted part of the wave. 
This is followed by a generally much wider region in which the vibrational 
degrees of freedom reach equilibrium. This region is called the relaxation 
region. 

Waves in which both types of lag have an effect are called partly dispersed 
shock-waves. In  some cases of very weak waves the relaxation alone gives suf- 
ficient resistance to the convective effects and the diffusion-resisted part of the 
wave is absent. Such waves are called fully dispersed. 

In  the present discussion we shall, in the case of partly dispersed waves, 
assume that the relaxation region is long compared with the diffusion-resisted 
region, in fact so much so that the thickness of the latter can be put equal to 
zero in the calculations. It is assumed throughout that the temperature is low 
enough and the pressure high enough for dissociation effects to be negligible. 

Although the development of the stable waveform is most conveniently dis- 
cussed in terms of a wave travelling into a stationary gas (this is also the case met 
with in the shock tube), for calculation purposes it is more convenient to consider 
the flow in a co-ordinate system fixed in the wave. This corresponds to the case 
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of a gas passing through a stationary wave. Both distances and times will be 
measured from the downstream end of the diffusion-resisted part of the wave. 
Because of the assumption about the relative thicknesses of the two regions of the 
shock-wave, this definition is sufficiently accurate in most cases. It does, however, 
need modification in the case of a fully dispersed shock-wave. 

It will be noted that in the definition adopted here the shock-wave is the whole 
of the wave. In  the literature the wave is often described as a shock-wave 
followed by a relaxation region, and the term shock-wave therefore used for that 
part of the wave which in this paper, following Lighthill, is called the diffusion- 
resisted part of the wave. 

Looking now at the passage of a diatomic gas through a stationary partly 
dispersed shock-wave, the processes may be described physically as follows. The 
gas approaches the shock-wave with conditions (1) and is compressed very 
rapidly in the diffusion-resisted part of the wave, so rapidly that the vibrational 
degrees of freedom are inactive. This means that the conditions at (a),  just 
behind this part of the wave, can be calculated from the shock-wave equations 
ignoring the vibrational degrees of freedom. After ( a )  energy is fed into the vibra- 
tional degrees of freedom at a rate which depends on the pressure and temperature 
and on the difference between the local value of the vibrational energy and its 
equilibrium value at the local temperature. Temperature in this context means 
translational temperature, and it is assumed that the approach to vibrational 
equilibrium is so slow that the translational and rotational energies are in local 
equilibrium throughout the relaxation region. The final state with all the degrees 
of freedom in energy equilibrium is reached a t  (2), which is theoretically at in- 
finity downstream. 

The main theme of this paper is a discussion of the structure of the relaxation 
region, a problem which has received considerable treatment in the literature, 
but nevertheless remains far from clarified. 

The ultimate goal from a practical point of view is to be able to predict 
the structure of the relaxation region for any shock-wave with given initial 
conditions. It w q  be shown that it is possible to do this very rapidly pro- 
vided the rate of approach to  equilibrium is known throughout the relaxation 
region. 

We shall, for the time being, assume that the rate of change of vibrational 
energy at any point in the relaxation region is proportional to the difference 
between its local equilibrium value, 3 (which is a function of the local tempera- 
ture T), and its actual value, G, so that a relaxation equation may be written 

au 
at 
_ -  - ~[a(!#!') - ~ ( t ) ] .  

Here t is the time and o is assumed to be a function of pressure and temperature 
only. Although (1) is strictly speaking only valid for a system of harmonic oscil- 
lators with small deviations from equilibrium (Landau & Teller, 1936; Herzfeld, 
1955), nearly all work on the structure of relaxation regions has been done using 
this equation. It certainly forms a reasonable basis for the discussion of diatomic 
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gases in which there is only one mode of vibration, in particular as neither 
theoretical nor experimental evidence is yet available which can suggest the 
form of a more complicated equation including the effects of anharmonicity and 
large departures from equilibrium. 

For polyatomic molecules the situation is more complicated. In  the case 
of several completely independent modes of vibration excited in parallel, 
it would be reasonable to write an equation of the form (1) for each mode. In 
actual molecules the energy transfer is probably a combination of simple transfer 
in parallel and various types of transfer in series, and the form of the appropriate 
relaxation equation is not known. Some slight progress has been made theoretic- 
ally, but it seems likely that further progress must depend, at least in part, on 
more detailed experimental results than those already available. 

ALItheoretical predictions of w show that for an ideal gas, in which the specific 
heats depend on temperature only, w is directly proportional to the pressure and 
may be written 

The temperature dependence of R is far more complicated. Relations similar to 
the one given by Gunn (1946), 

w = p R ( T ) .  (2) 

R = AT-f exp ( - BY’-)) { 1 - exp ( - 6 /T) ) ,  (3) 

have been used in the plotting of most experimental results. A and B are con- 
stants depending on the gas only and 0 is the characteristic temperature of 
vibration. The important term in this expression is exp ( - BT-$ which follows 
from the Landau & Teller (1936) theory for the excitation probability. The 
power of T in the factor preceding the exponential depends, among other things, 
on the assumptions made in integrating this probability over the velocity dis- 
tribution of the molecules. The bracket is often replaced by unity. 

Experimental results confirm the general dependence of R on T but are not 
yet sufficiently accurate for judging the merits of the various forms of the less 
important terms in the expression. Q must therefore be determined experiment- 
ally, and the present investigation was in fact started because of the apparent 
confusion in the literature as to the correct way of determining R from experi- 
mental observations of relaxationregions. As w depends on both pressure and tem- 
perature and these both vary through the relaxation region (the temperature in 
strong shock-waves varying by a very large amount) it was felt that the common 
practice of ascribing to any particular relaxation region one value of w and taking 
this as the value corresponding to certain ‘mean ’ values of p and T was likely to 
lead to errors (or uncertainties) in D larger than those inherent in the experi- 
mental techniques used. 

I n  fj 2 it is shown that the variables in the relaxation region can be simply 
related by means of universal functions using the Rayleigh-line approach, and 
this approach is shown to  lead to a simple method of determining local values 
of R throughout the relaxation region. 

Most writers have used 7 = l/o to characterize the rate of approach to equili- 
brium and called i t  a relaxation time. This notation derived from the fact that if 
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in (1) both w and 5 are taken to have constant values the equation integrates to 
give cr - 3, = (8, - ZF,) [ 1 - exp ( - wt)] and I/w is a conventional relaxation 
time. However, for the general case, in which we are interested in local rates of 
approach rather than over-all times, we prefer to use w and call it  a relaxation 
frequency. 

2. Exact solutions using the Rayleigh-line method 
f 

The equations governing the transition through the shock-wave are: 

Continuity: PV = P19. (4) 

Momentum: p + pv2 = p1 + p1 w;. (5) 

Energy: h + *v2 = h, + 
State: p = pRT. 

Here h is the enthalpy and R is the gas constant. These equations relate variables 
at any point in the shock-wave, except in the diffusion-resisted part. They do 
not, however, relate the conditions at a point to the position of the point. Hence 
to introduce the x-co-ordinate we must use the relaxation equation (1) which can 
with dxldt = v, T = T(z), and t = t(z), be written 

d c  
dx 

v - = pQ(T) [3(~) - c~(x)]. 

If we know all the variables at a series of points x,, . . . ) xp in the relaxation region 
we can at once find the local value of Q in, say, the region xn to xn+,: 

and each relaxation region will give values of Q over the whole temperature 
range from T, to T2. 

Experimental results are usually obtained as interferometer photographs and 
only one variable, the density p, is initially known as a function of x. In  principle, 
all other variables can, using equations (4) to (7),  be expressed as functions of p 
and the conditions at (a) ,  but the expressions are very lengthy and numerical 
calculations of IR using (9) would be very tedious. This is probably the reason 
why previous writers have not used (9) to find the local values of but instead 
introduced certain approximations and found a single value of LI for each relax- 
ation region. 

We shall now show that it is possible to rearrange the exact equations so that the 
relations between the variables can be expressed as universal functions which 
have already been tabulated. This reduces very considerably the time involved 
in finding values of Q from a known density distribution and makes calculations 
practicable. 

The energy equation may be written 

cpaT + & v 2 + v  = c ~ , T , + & v ~ + ~ , ,  (10) 



Analysis of vibrational relaxution regions 29 

where cpa is the specific heat at constant pressure ignoring vibration. If we put 

u -a, = q,  (11) 

this becomes C,,T++V~ = cp,T,+$v~-q.  (12) 

We note that the equations (a), ( 5 ) ,  (6), (7) and (12) are the equations governing 
the steady constant-area flow of an ideal gas with constant specific heats with 
heating or (as in the present case) cooling. We may therefore treat the non- 
equilibrium flow of the real gas through the shock-wave as that of an ideal gas 
(which we shall call the a-gas) from which heat is being extracted at a rate equal 
to  that at which the energy increases in the vibrational modes of the real gas. 

The real gas and the a-gas have at each point the same values of p ,  p, T and v, 
as these depend only on the translational energy which is in equilibrium. Other 
variables, such as stagnation temperature and Mach number, are useful para- 
meters in the calculations when referred to the a-gas, but have no obvious mean- 
ing in the real gas except at  stations (1) and (2). 

To find all the required relations for the variables in the relaxation region we 
need only consider the a-gas and note that the quantity q increases monotonic- 
ally from zero at station (a)  to a2-i7, at station (2). For the a-gas we know all 
quantities at station (l), namely m,, T,, To,, p,, v1 and p,. These are the same as 
for the real gas except the Mach number m,, which is related to the Mach number 
X, of the real gas by 

and the stagnation temperature, To,, which is only of interest for the a-gas and is 
(13) 

(14) 

m1= iM, (YJYa)', 

To, = T I (  1 + $(y, - 1) @). 

Conditions (a) immediately behind the diffusion-resisted part of the shock-wave 
are found as those behind a normal shock-wave in the a-gas (the a-shock) with 
initial conditions (1). To does not change through the diffusion-resisted part of 
the wave. 

I n  the region (a)  to (2) the ratio of the values of a certain quantity at two points 
can be expressed as a function of the Mach numbers of the a-gas at  the two 
stations. Choosing as a reference station that at which m = 1, and using suffix b 
to  indicate values at the reference station, we have the well-known Rayleigh-line 
relations (e.g. see Shapiro 1953): 

and 

T (ya + 1)2 m2 
Tb (1 + yam2)2 ' 
- = _____ 

- -  To 2(y, + 1) m2 (1 + +[y, - 11 m2) 
L 

TOb (1 + Ya,2)2 
, 

These relations have been tabulated for ya = 7/5, the value for diatomic and 
linear molecules (Shapiro 1953; Zucrow 1958). Available tabulations may not 
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be detailed enough, but the range of m required for practical calculations is quite 
small and if necessary more detailed tables can be prepared very quickly. 

So far we have described how to find the conditions at (a) and how to relate the 
variables within the relaxation region. Before describing the actual calculations 
in the relaxation region we must discuss the general behaviour of the variables 
in this region. 

First let us look at the possible values of mu. The minimum possible value of 
M, is unity which gives m, = (yl/yu)*. As M, increases, m, reaches a maximum 
value of unity for H, = ( yu/yl)a. In the range 1 < M, < @,&,)a, the shock-wave is 
fully dispersed and m, = ma < 1. When M, > (y,/y,)a, m, > 1 and a diffusion- 
resisted part (a-shock) is present, corresponding to a normal shock-wave in the 
a-gas changing m from a value m, > 1 to a value mu < 1. We therefore conclude 
that for all waves mu < 1. 

Equation (10) may be written 

As q increases when ~t: increases through the relaxation region, To must decrease. 
Differentiating (16) we find that dTo/dm > 0 for m c 1, so that m decreases 
through the relaxation region. Similarly we find, by differentiating (17) and (It!), 
that p and p increase while v decreases. 

The behaviour of T is more complicated. Here we find that for decreasing m, T 
increases in the interval 1 > m > l/(yu)4 and decreases for m < I/(y,)a. If, 
therefore, 1 > mu > l/(y,)* the temperature increases at the beginning of the 
relaxation region. Whether T increases throughout the relaxation region or 
reaches a local maximum depends on the range of m covered in the relaxation 
region. This again depends on the function 5 = 5(T) for the particular gas and 
cannot be discussed simply in terms of the initial conditions. 

The calculation of the relaxation region can now be carried out as follows. 
(1) From Equations (15) to (18), or using tables, find the reference values 

(suffix b )  using the known conditions at either station (1) or station (a). 
(2) Choose a succession of decreasing values of m, starting with mu. For each 

value of m read from the tables of the values of T, To, v, p and p .  (By taking as 
values of m those appearing as arguments in the table, interpolation is avoided.) 

(3) From T and tabulated values of S(T) find 5. 
(4) From To find q from (19) and hence cr from (1 1). 
(5) Continue this process until at station ( 2 )  cr2 = 5,. The exact conditions at 

(2) are found very easily by ' overshooting ' slightly and interpolating once. 
It is interesting to compare this method of finding the equilibrium conditions 

at (2) with the usual method due to Bethe & Teller (1941). In their method the 
temperature at (2) is chosen and conditions at (1) calculated. If the equilibrium 
conditions behind a shock-wave with known initial conditions are required it 
is therefore necessary to carry out the calculations for at least two values of T, 
before interpolating, whereas in the method suggested above, the final values 
follow from a single calculation starting with the known initial conditions. 

Having determined the variables through the relaxation region it is now 
straightforward to apply the results to the two cases of interest. 
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If p is known as an experimentally determined function of x ,  we can find the 
values of z at the points used in the tabulation of the variables in the relaxation 
region, in other words find z = z(m), and (9) at once gives the local values of Q. 

If R is known as a function of T we know all quantities in the relaxation region 
except x ,  and (8 )  can be rewritten as 

and integrated numerically to  give the values of x .  
A good deal of thought was given to the choice of the most convenient para- 

meter to be used in the calculations, and it was found that using the Mach number, 
m, of the ol-gas gave by far the quickest calculation procedure. With the vari- 
ables tabulated as functions of m with sufficiently small steps in m, interpolation 
in the tables is only necessary at stations (a) and (2). If, for example, a series of 
values of p, or equidistant values of x ,  were chosen, interpolation would be neces- 
sary at all points in the relaxation region. 

3. Discussion and conclusions 
It has been shown that the use of the Rayleigh-line equations reduces the 

numerical work involved in the calculation of the structure of relaxation regions 
or the derivation of relaxation frequencies from experimentally determined 
density distributions to such an extent that exact calculations become just as 
easy as approximate ones. 

The use of the Rayleigh-line equations has the major advantage that a whole 
series of values of the relaxation frequency, each corresponding to a definite 
pressure and temperature, can be determined from each relaxation region 
density distribution. This reduces the experimental work very considerably, and, 
what is perhaps more important, it offers a method for detailed study of the 
relaxation equation. If the simple equation (I) is valid it will be found that 
values of Q (i.e. w reduced to a pressure of one atmosphere) depend on T only 
and not on where in the relaxation region they have been found. If, however, R 
depends also on the departure from equilibrium, this should be easily detectable, 
and it might be possible to find the form of the dependence. 

Similarly, in the case of gases for which the simple relaxation equation would 
not be expected to  hold, detailed analysis of the relaxation region may help to 
determine the more complicated relaxation equation. 

The method is at present being used in this department to evaluate experi- 
mental results on strong (large departures from equilibrium) shock-waves in 
nitrogen and on weaker waves in carbon dioxide which has several modes of 
vibration with different relaxation frequencies. 

In  the following paper Blythe (1961) uses the exact calculation method out- 
lined in the present paper to assess the various approximate methods which have 
been proposed in the literature, and he also includes illustrative numerical 
examples. 

The author is indebted to Mr H. K. Zienkiewicz and Mr P. A. Blythe for many 
helpful discussions. 
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